The crystal field stabilisation energy (CFSE) of [Fe(H<sub>2</sub>O)<sub>6</sub>]Cl<sub>2</sub> and K<sub>2</sub>[NiCl<sub>4</sub>], respectively, are

(2019 Main, 10 April II)

(a)  $-0.4 \Delta_o$  and  $-1.2 \Delta_t$ 

(b)  $-0.4 \, \Delta_o \, \text{and} - 0.8 \, \Delta_t$ 

(c)  $-2.4 \Delta_o$  and  $-1.2 \Delta_t$ 

(d)  $-0.6 \Delta_o$  and  $-0.8 \Delta_t$ 

**Key Idea** Crystal field splitting occurs due to the presence of ligands in a definite geometry. In octahedral complexes the energy of two,  $e_g$  orbitals will increase by  $(0.6) \Delta_o$  and that of three  $t_{2g}$  will decrease by  $(0.4) \Delta_o$ .

The complex ion that will lose its crystal field stabilisation energy upon oxidation of its metal to +3 state is [Fe(phen)<sub>3</sub>]<sup>2+</sup>.

$$[Fe(phen)_3]^{2+} \xrightarrow{-e^-} [Fe(phen)_3]^{3+}$$

In  $[Fe(phen)_3]^{2+}$ , electronic configuration of  $Fe^{2+}$  is  $3d^64s^0$ . Phenanthrene is a strong field symmetrical bidentate ligand. The splitting of orbital in  $Fe^{2+}$  is as follows:



$$CFSE = 6 \times -0.4 \Delta_{\alpha} = -2.4 \Delta_{\alpha}$$

The splitting of orbital and arrangement of electrons in  $Fe^{3+}$  is as follows:



CFSE =  $5 \times -0.4 \Delta_o = -2.0 \Delta_o$ 

Fe<sup>2+</sup> upon oxidation of its metal to +3 state lose its CFSE from  $-2.4~\Delta_a$  to  $-2.0\Delta_a$ .