The crystal field stabilisation energy (CFSE) of [Fe(H₂O)₆]Cl₂ and K₂[NiCl₄], respectively, are (2019 Main, 10 April II) (a) $-0.4 \Delta_o$ and $-1.2 \Delta_t$ (b) $-0.4 \, \Delta_o \, \text{and} - 0.8 \, \Delta_t$ (c) $-2.4 \Delta_o$ and $-1.2 \Delta_t$ (d) $-0.6 \Delta_o$ and $-0.8 \Delta_t$ **Key Idea** Crystal field splitting occurs due to the presence of ligands in a definite geometry. In octahedral complexes the energy of two, e_g orbitals will increase by $(0.6) \Delta_o$ and that of three t_{2g} will decrease by $(0.4) \Delta_o$. The complex ion that will lose its crystal field stabilisation energy upon oxidation of its metal to +3 state is [Fe(phen)₃]²⁺. $$[Fe(phen)_3]^{2+} \xrightarrow{-e^-} [Fe(phen)_3]^{3+}$$ In $[Fe(phen)_3]^{2+}$, electronic configuration of Fe^{2+} is $3d^64s^0$. Phenanthrene is a strong field symmetrical bidentate ligand. The splitting of orbital in Fe^{2+} is as follows: $$CFSE = 6 \times -0.4 \Delta_{\alpha} = -2.4 \Delta_{\alpha}$$ The splitting of orbital and arrangement of electrons in Fe^{3+} is as follows: CFSE = $5 \times -0.4 \Delta_o = -2.0 \Delta_o$ Fe²⁺ upon oxidation of its metal to +3 state lose its CFSE from $-2.4~\Delta_a$ to $-2.0\Delta_a$.